
GMI Namelist Reorganization

Jules Kouatchou

NASA Goddard Space Flight Center
SIVO/ASTG - Code 610.3

Greenbelt, MD 20771

April 23, 2007

Abstract

We describe how the GMI code was modified to reorganize the namelist file (renam-
ing of the sections), to replace species indices with species labels in namelist settings,
and to simplify the process of entering station information for station diagnostics.

1 Introduction

The GMI code is currently in a major transition. The code is being refactored and compo-
nentized with the objective of making it more readable, maintainable, flexible and extensible
[1]. The following components have been created: Chemistry, Emission, Deposition, Diffu-
sion, Convection and Advection. In addition, we have implemented three other supporting
components: SpeciesConcentration, MetFields, and Diagnostics. With such a design, it be-
came urgent to restructure the namelist settings in order to facilitate the componentization
process.

GMI users have observed that it was difficult to set namelist variables using species
indices. They would have to know (for a given mechanism) the total number of species,
the position of each species in the mechanism species list, etc. Identifying species indices is
a cumbersome task and is subject to errors. In addition, the task should start over when
we switch mechanisms. The ideal situation would be for users to only specify the species
names without worrying about the underlying species indices, and the number of species
selected.

Along the same line, when doing station diagnostics, users set three different namelist
variables: the total number of stations, the complete list of stations, and the location each
station. The number of stations can be very large (several hundreds) and counting them,
keeping track of their names and locations within the namelist file is not easy. We only
need a simple way of entering the stations without being concerned of their locations and
how many they are.

In this report, we explain how we reorganized the GMI namelist file by renaming sections
and introducing new ones. Since there was some inconsistency in the location of some
namelist variables within the namelist file, we took the initiative to move variables so
that variables are grouped with respect to the component they “belong” to. We replaced

1

namelist variables using species indices in their setting with new ones that rely on species
labels. Finally, we changed the way stations are set for station diagnostics.

2 Namelist Sections

In this section, we describe how GMI namelist sections were reorganized. This reorganiza-
tion was carried out for two main reasons:

1. There were some inconsistency in the way some variables were assigned to namelist
sections. For instance some diagnostics related variables did not appear in the section
reserved for diagnostics (ACTM OUTPUT).

2. In the process of componentizing the GMI code, the need came to restructure namelist
sections so that new ones are created and that they are named according to compo-
nents (Advection, Chemistry, Convection, Deposition, Diagnostics, Diffusion, Emis-
sion, MetFields).

Table 1 describes list the names of the new namelist sections.

Old Namelist Section New Namelist Sections

ESM ESM

ACTM CONTROL nlGmiControl

ACTM INPUT nlGmiMetFields
nlGmiSpeciesConcentration

ACTM OUTPUT nlGmiDiagnostics

ACTM RESTART nlGmiRestart

ACTM ADVEC nlGmiAdvection

ACTM CONVEC nlGmiConvection

ACTM DIFFU nlGmiDiffusion

ACTM DEPOS nlGmiDeposition

ACTM EMISS nlGmiEmission

ACTM CHEM nlGmiChemistry

ACTM PHOT nlGmiPhotolysis

ACTM LIGHTNING nlGmiLightning

ACTM TRAC nlGmiTracer

Table 1: New namelist sections in the namelist file.

Remark 1 It is important to note that the ACTM INPUT section (mostly containing me-
teorological and species concentration related variables) was divided into two sections, nl-
GmiMetFields and nlGmiSpeciesConcentrations.

We list in Table 2 the variables that were moved to other sections.

2

Namelist Variables Old Section New Section

pr level all ACTM CONTROL nlGmiDiagnostics
k1r gl ACTM CONTROL nlGmiDiagnostics
k2r gl ACTM CONTROL nlGmiDiagnostics
gwet opt ACTM CONTROL nlGmiMetFields
loss opt ACTM CONTROL nlGmiChemistry
oz eq synoz opt ACTM CONTROL nlGmiChemistry

hdr var name ACTM INPUT nlGmiDiagnostics
hdf dim name ACTM INPUT nlGmiDiagnostics
lat dim name ACTM INPUT nlGmiDiagnostics
lon dim name ACTM INPUT nlGmiDiagnostics
prs dim name ACTM INPUT nlGmiDiagnostics
spc dim name ACTM INPUT nlGmiDiagnostics
rec dim name ACTM INPUT nlGmiDiagnostics
tim dim name ACTM INPUT nlGmiDiagnostics

AerDust var name ACTM CONTROL nlGmiChemistry
AerDust infile Name ACTM CONTROL nlGmiChemistry
Do AerDust Calc ACTM CONTROL nlGmiChemistry
AerDust Effect opt ACTM CONTROL nlGmiChemistry

Table 2: List of namelist variables that moved to other
namelist sections.

The new namelist structure follows the componentization effort (still in progress) in the
sense that sections are named after components or sub-components, and namelist variables
are grouped according to their use.

3 From Species Indices to Species Names

Setting namelist variables using species indices is not a simple task. When moving from
one experiment to another, users may be interested in a given set of species but will have
to reset namelist variables matching species with their indices. In fact, their main concern
is to know if a given species is part of a chemical mechnism but not its index. Mistakes
may unintentionally be introduced, leading to a waste of time and computing resources. To
alleviate these problems, we propose to use species labels instead of indices in the namelist
file.

To achieve it, we wrote a Fortran module (GmiSpeciesRegistry mod containing the
function getSpeciesIndex) providing the species index given its name. The function
getSpeciesIndex only takes as argument a species name and does not depend on any
chemical mechanism or any particular experiment. Two variables have to be passed to the
module (will do internal initialization) for the function to work properly:

• num species: total number of species used in the experiment

3

• const labels: list of all species names used in the experiment.

Remark 2 The module gets its information at run time but not at compilation time. This
allows us to take into account tracer runs without making any specific provision in the code.

We substituted old namelist variables (using species indices) with new ones. In the
namelist file, we only need to provide the list of species names we are interested in and the
code will figure out (using getSpeciesIndex) what indices they correspond to.

In Table 3, we provide the list of the new namelist variables and the corresponding old
ones. It is important to note that the old namelist variables remain part of the code (as
regular variables) and are still used for calculations. The newly created variables are only
local variables utilized to set the ones they replace in the namelist file.

Old Namelist variables New Namelist Variables

nlGmiSpeciesConcentration SECTION

fixed const map(1:n) fixedConcentrationSpeciesNames

nlGmiDiagnostics SECTION

pr const rec flag(1:n) concentrationSpeciesNames
pr emiss rec flag(1:n) surfEmissSpeciesNames
pr drydep rec flag(1:n) dryDepSpeciesNames
pr wetdep rec flag(1:n) wetDepSpeciesNames
pr tend rec flag(1:n) tendSpeciesNames
flux species(1:n) fluxSpeciesNames
ifreq# species(1:n) (# = 1, 2, 3, 4) freq#SpeciesNames
species overpass#(1:n) (# = 1, 2) overpass#SpeciesNames
noon species(1:n) noonSpeciesNames
local species(1:n) localSpeciesNames
col diag species(1:n) colDiagSpeciesNames

nlGmiAdvection SECTION

advec flag(1:n) advectedSpeciesNames

nlGmiEmission SECTION

emiss map(1:n) emissionSpeciesNames
emiss map aero(1:n) emissionAeroSpeciesNames
emiss map dust(1:n) emissionDustSpeciesNames

nlGmiChemistry SECTION

forc bc map(1:n) forcedBcSpeciesNames

Table 3: New namelist variables used to set species names
instead of species indices in the namelist file.

We adopted the following principles for the new namelist variables:

4

1. For a given variable, the number of species ames entered is no more ncessary.

2. Each variable is a long string that starts and ends with a single quote. Species names
are separated with commas:
wetDepSpeciesNames = ’H2O2, HNO3, MP, N2O5’,

3. In the previous version of the code, emiss map was set in the namelist file to determine
the number of species in the emission input file and to select the species to be read in
from the file. In the new setting, if a species is not read in, the name to be included
in emissionSpeciesNames is xxx. The function will return -1 for the species index.

4. The order for entering the names is not important for diagnostics related variables.
However it is relevant for variables (fixedConcentratinSpeciesNames, emission-

SpeciesNames, emissionDustSpeciesNames, emissionAeroSpeciesNames, forced-

BcSpeciesNames) used to read in files.

5. Entering species names is not case sensitive. For example, the names HNO3, hNO3,

HnO3, HNo3, hnO3, hNo3, Hno3, hno3 correspond to the same species. Users can
select any of these names to refer to HNO3.

6. If a species names does not exist, the code will abort.

Remark 3 In previous versions of the GMI code, it was assumed that if few species are
selected for constituent, wep deposition, dry deposition, and tendency output, the first species
in the mechanism will by default be included. In this work, we did not make such an
arrangement. Only the species provided by the user are considered for output.

Here is an example of namelist setting for the AURA (combo, 124 species, no ship
emission) experiments:

dryDepSpeciesNames = ’CH2O, H2O2, HNO3, MP, N2O5, NO2, O3, PAN, PMN, PPN, R4N2’,

wetDepSpeciesNames = ’H2O2, HNO3, MP, N2O5’,

surfEmissSpeciesNames = ’CH2O, CO, NO, ALK4, C2H6, C3H8, ISOP, MEK, PRPE’,

fluxSpeciesNames = ’CH2O, CH4, CO, HNO3, H2O2, MP, NO, NO2, N2O5, O3, PAN,

SYNOZ’,

freq1SpeciesNames = ’CH4, CO, HNO3, N2O, O3, OH, ClO, Cl2O2, ClONO2, HCl, CFCl3,

CF2Cl2’,

overpass1SpeciesNames = ’CH2O, CO, NO, NO2, O3, OH’,

colDiagSpeciesNames = ’CH2O, CO, HNO2, HNO3, HNO4, H2O, HO2, H2O2, NO, NO2, NO3,

N2O5, O3, OH, ALD2, ALK4, C2H6, C3H8, ISOP, PAN, PRPE, ACET’,

tendSpeciesNames = ’CH2O, CH4, CO, HNO3, H2O2, MP, NO, NO2, N2O5, O3, PAN, SYNOZ’,

advectedSpeciesNames = ’CH2O, CH4, CO, H2, HCOOH, HNO2, HNO3, HNO4, H2O2, MOH, MP,

5

N2O, NO, NO2, NO3, N2O5, O3, Br, BrCl, BrO, BrONO2, HBr, HOBr, Cl, Cl2, ClO, Cl2O2,

ClONO2 HCl, HOCl, OClO, CH3Br, CH3Cl, CH3CCl3, CCl4, CFCl3, CF2Cl2, CFC113, CFC114,

CFC115, HCFC22, HCFC141b, HCFC142b, CF2Br2, CF2ClBr, CF3Br, H2402, ACTA, ALD2, ALK4,

C2H6, C3H8, ETP, HAC, IALD, IAP, ISOP, MACR, MEK, MVK, PAN, PMN, PRPE, R4N2, RCHO,

RCOOH, DEHYD, SYNOZ’,

emissionSpeciesNames = ’xxx, xxx, NO, NO, NO, NO, NO, CO, CO, CO, MEK, MEK, MEK, PRPE,

PRPE, PRPE, C2H6, C2H6, C2H6, C3H8, C3H8, C3H8, ALK4, ALK4, ALK4, ALD2, ALD2, CH2O,

CH2O, xxx, xxx, xxx, xxx, xxx, xxx’,

forcedBcSpeciesNames = ’CFCl3, CF2Cl2, CFC113, CFC114, CFC115, CCl4, CH3CCl3 HCFC22,

HCFC141b, HCFC142b, CF2ClBr, CF2Br2, CF3Br, H2402, CH3Br, CH3Cl, CH4, N2O’,

Remark 4 The setting of each namelist variable can be done on a single line or on several
ones. In case many lines are used, it is important to begin each line on the first or second
column to avoid any problem.

We present two examples (for dry deposition diagnostics and reading the emission file)
showing how the new namelist variables are used internally to set old ones.

!!!!!!!!!!!!!!!!!!!!

! For dry deposition

!!!!!!!!!!!!!!!!!!!!

! Set the initial value of the list

tempListNames(:) = ’’

! Construct the list of names using the long string

call constructListNames(tempListNames, dryDepSpeciesNames)

num_drydep_outrecs = count(tempListNames /= ’’)

do ic = 1, num_drydep_outrecs

drydep_outrec_map(ic) = getSpeciesIndex(tempListNames(ic))

end do

!!!!!!!!!!!!!!

! For emission

!!!!!!!!!!!!!!

! Set the initial value of the list

tempListNames(:) = ’’

! Construct the list of names using the long string

call constructListNames(tempListNames, emissionSpeciesNames)

num_emiss = Count (tempListNames(:) /= ’’)

if (num_emiss > 0) then

do ic = 1, num_emiss

emiss_map(ic) = getSpeciesIndex(tempListNames(ic))

6

end do

num_emiss = count(emiss_map(:) > 0)

end if

4 Station Diagnostics

As we mentioned in the introduction section, when we want to do station diagnostics we
need to set in the namelist file three variables :

col diag num: total number of stations

col diag site: complete list of stations

col diag lat lon: locations (latitute/longitude) of stations.

Users need not only the count the number of stations (can be several hundreds) but also
match the name of each station with its location. Removing/adding one station from the
list requires the resetting of the above three variables with the possibility of mis-matching.
To facilate the selection of stations, we propose to do the following:

• Contruct a file containing a list of all the possible stations and their locations. A
namelist variable will be created to point to the file. New stations can be added to
the file at any time. The order of writting station information is irrelevant.

• Create a namelist variable (long string) to enter the list of selected stations.

• Allow the code to check if each selected station exists in the file and extract its location.

• Allow the code to compute the number of selected stations.

To achieve it, we created two new namelist variables (see Table 4).

Old Namelist variables New Namelist Variables

nlGmiDiagnostics SECTION

col diag num N/A
col diag site() colDiagStationsNames
col diag lat lon(2,n) N/A
N/A stationsInputFileName

Table 4: New namelist variables for station diagnostics.

The piece of code used to carry out the above operations is:

! Construct the list of station using the long string

call constructListNames(col_diag_site, colDiagStationsNames)

7

col_diag_num = Count (col_diag_site(:) /= ’’)

if (col_diag_num /= 0) then

do ic = 1, col_diag_num

! For each station in the list, check if it exists in the file

! and get its position (lat/lon)

call getStationPosition(col_diag_site(ic), &

col_diag_lat_lon(1,ic), &

col_diag_lat_lon(2,ic), &

stationsInputFileName)

end do

.

.

.

end if

We present below a sample namelist setting for colDiagStationsNames and the first few
lines of the file (colDiagStationList.asc) containing station information.

colDiagStationsNames = ’SPO, MCM, HBA, FOR, NEU, SYO, PSA, MAR, MAQ,

TDF, CRZ, LAU, CGO, ASP, CPT, EIC, JOH, REU, NAM, FIJ, TAH, CUI, SMO,

PNA, WAT, ASC, NAT, SEY, BRA, MAL, NAI, SNC, CHR, KCO, PAR, TVD, PAN,

VEN, RPB, GMI, POO, KUM, MLO, GTK, HON, TAI, ASK’,

--

Station name Lat Lon Description

--

SPO -89.98 335.20

MCM -77.83 166.60

HBA -75.56 333.50

FOR -71.00 12.00

NEU -71.00 352.00

SYO -69.00 39.58

PSA -64.92 296.00

Remark 5 While editing the file containing the station information, the following rules
apply:

1. The first three lines of the file should start with the # character.

2. Column 1 to Column 16 are for the station name.

3. Column 17 to Column 25 are for the latitude of the station.

4. Column 26 to Column 34 are for the longitude of the station.

5. The remaining columns are reserved to describe stations and are not read in.

8

5 Conclusions and Future Work

We described the changes we made in the GMI code to reorganize the namelist file and to
make it more consistent with the GMI components. In addition, we presented how the code
was modified to be able to replace species indices with species names in the namelist file,
and how we simplified the setting of station diagnostics variables. Our initial tests were
successful and validated the code changes.

Throughout the code, species indices are passed to components, extending the argument
list of component interface routines. With the modifications done in the code, we can now
obtain a species index by using its name. We plan to make necessary changes so that species
indices are derived within components only.

References

[1] J. Kouatchou, T. Clune, H. Oloso, S. Zhou, M. Damon, and B. Womack, Refactoring
and componentizing legacy codes: GMI case study, in preparation.

9

